DGroup=df.groupby(['Conmer id','Purchase date']).count()Conmer id Purchase date A B C D
2397 2017-07-29 19:05:24 1 1 1 1
4107 2016-03-31 19:06:54 1 0 0 1
2016-04-01 05:41:55 1 0 0 1 2016-04-02 06:18:16 1 0 0 1 2016-04-03 05:28:02 1 0 0 1 2016-04-04 05:47:08 1 0 0 1 2016-04-05 05:15:10 1 0 0 1 2016-04-09 05:40:06 1 0 0 1 2016-04-10 05:02:34 1 0 0 1 2016-04-11 05:06:18 1 0 0 1
.... 234 2016-03-31 11:06:54 1 0 0 1
2016-04-01 05:41:55 1 0 0 1 2016-04-02 16:18:16 1 0 0 1 2016-04-03 15:28:02 1 0 0 1 2016-04-04 15:47:08 1 0 0 1 2016-04-05 15:15:10 1 0 0 1 2016-04-09 15:40:06 1 0 0 1 2016-04-10 11:02:34 1 0 0 1 2016-04-11 13:06:18 1 0 0 1
2634 2015-08-16 18:26:46 1 1 1 1 0
2017-11-30 11:42:50 1 1 1 1 0 2017-12-01 06:14:47 1 1 1 1 0 2017-12-02 06:09:43 1 1 1 1 0
.... now how i can get individual consumer id from this grouped data with cunsumer id and date (with the entire row) in to another variable for plotting and analysing?