While there is no method to find specific ranks within a row, you can rank elements in a pandas dataframe using the rank
method.
For example, for a dataframe like this:
df = pd.DataFrame([[1, 2, 4],[3, 1, 7], [10, 4, 2]], columns=['A','B','C'])
>>> print(df)
A B C
0 1 2 4
1 3 1 7
2 10 4 2
You can get the ranks of each row by doing:
>>> df.rank(axis=1,method='dense', ascending=False)
A B C
0 3.0 2.0 1.0
1 2.0 3.0 1.0
2 1.0 2.0 3.0
By default, applying rank
to dataframes and using method='dense'
will result in float ranks. This can be easily fixed just by doing:
>>> ranks = df.rank(axis=1,method='dense', ascending=False).astype(int)
>>> ranks
A B C
0 3 2 1
1 2 3 1
2 1 2 3
Finding the indices is a little trickier in pandas
, but it can be resumed to apply a filter on a condition (i.e. ranks==2
):
>>> ranks.where(ranks==2)
A B C
0 NaN 2.0 NaN
1 2.0 NaN NaN
2 NaN 2.0 NaN
Applying where
will return only the elements matching the condition and the rest set to NaN
. We can retrieve the columns and row indices by doing:
>>> ranks.where(ranks==2).notnull().values.nonzero()
(array([0, 1, 2]), array([1, 0, 1]))
And for retrieving the column index or position within a row, which is the answer to your question:
>>> ranks.where(ranks==2).notnull().values.nonzero()[0]
array([1, 0, 1])
For the third element you just need to change the condition in where
to ranks.where(ranks==3)
and so on for other ranks.