In WinBUGS, I am specifying a model with a multinomial likelihood function, and I need to make sure that the multinomial probabilities are all between 0 and 1 and sum to 1.
Here is the part of the code specifying the likelihood:
e[k,i,1:9] ~ dmulti(P[k,i,1:9],n[i,k])
Here, the array P[] specifies the probabilities for the multinomial distribution.
These probabilities are to be estimated from my data (the matrix e[]) using multiple linear regressions on a series of fixed and random effects. For instance, here is the multiple linear regression used to predict one of the elements of P[]:
P[k,1,2] <- intercept[1,2] + Slope1[1,2]*Covariate1[k] +
Slope2[1,2]*Covariate2[k] + Slope3[1,2]*Covariate3[k]
+ Slope4[1,2]*Covariate4[k] + RandomEffect1[group[k]] +
RandomEffect2[k]
At compiling, the model produces an error:
elements of proportion vector of multinomial e[1,1,1] must be between zero and one
If I understand this correctly, this means that the elements of the vector P[k,i,1:9] (the probability vector in the multinomial likelihood function above) may be very large (or small) numbers. In reality, they all need to be between 0 and 1, and sum to 1.
I am new to WinBUGS, but from reading around it seems that somehow using a beta regression rather than multiple linear regressions might be the way forward. However, although this would allow each element to be between 0 and 1, it doesn't seem to get to the heart of the problem, which is that all the elements of P[k,i,1:9] must be positive and sum to 1.
It may be that the response variable can very simply be transformed to be a proportion. I have tried this by trying to divide each element by the sum of P[k,i,1:9], but so far no success.
Any tips would be very gratefully appreciated!
(I have supplied the problematic sections of the model; the whole thing is fairly long.)