I am working Time Series data. I am facing problem while removing consecutive NaNs less than or equal to threshold from a Data Frame column. I tried looking at some of the links like:
Identifying consecutive NaN's with pandas : Identifies where consecutive NaNs are present and what is count.
Pandas: run length of NaN holes : Outputs run Length encoding for NaNs
There are many more others along this lane, but none of them actually tells how can we remove them after identifying.
I found one similar solution but that is in R : How to remove more than 2 consecutive NA's in a column?
I want solution in Python.
So here is the example:
Here is my dataframe column:
a
0 36.45
1 35.45
2 NaN
3 NaN
4 NaN
5 37.21
6 35.63
7 36.45
8 34.65
9 31.45
10 NaN
11 NaN
12 36.71
13 35.55
14 NaN
15 NaN
16 NaN
17 NaN
18 37.71
If k = 3, my output should be:
a
0 36.45
1 35.45
2 37.21
3 35.63
4 36.45
5 34.65
6 31.45
7 36.71
8 35.55
9 NaN
10 NaN
11 NaN
12 NaN
13 37.71
How can I go about removing the consecutive NaNs less than or equal to some threshold (k).