I am modeling electrical current through various structures with the help of FiPy. To do so, I solve Laplace's equation for the electrical potential. Then, I use Ohm's law to derive the field and with the help of the conductivity, I obtain the current density.
FiPy stores the potential as a cell-centered variable and its gradient as a face-centered variable which makes sense to me. I have two questions concerning face-centered variables:
If I have a two- or three-dimensional problem, FiPy computes the gradient in all directions (ddx, ddy, ddz). The gradient is a FaceVariable which is always defined on the face between two cell centers. For a structured (quadrilateral) grid, only one of the derivates should be greater than zero since for any face, the position of the two cell-centers involved should only differ in one coordinate. In my simulations however, it occurs frequently that more than one of the derivates (ddx, ddy, ddz) is greater than zero, even for a structured grid.
The manual gives the following explanation for the FaceGrad-Method: Return gradient(phi) as a rank-1 FaceVariable using differencing for the normal direction(second-order gradient).
I do not see, how this differs from my understanding pointed out above.
What makes it even more problematic: Whenever "too many" derivates are included, current does not seem to be conserved, even in the simplest structures I model...Is there a clever way to access the data stored in the face-centered variable? Let's assume I would want to compute the electrical current going through my modeled structure.
As of right now, I save the data stored in the FaceVariable as a tsv-file. This yields a table with (x,y,z)-positions and (ddx, ddy, ddz)-values. I read the file and save the data into arrays to use it in Python. This seems counter-intuitive and really inconvenient. It would be a lot better to be able to access the FaceVariable along certain planes or at certain points.