I have a set of led data saved on disk (led.csv) as such:
, LEDC1, LEDC2, LEDC3
0, 54859, 11349, 56859
1, 54850, 12135, 56890
2, 54836, 12400, 56892
3, 54840, 15725, 56897
4, 54841, 19038, 56896
5, 54837, 21232, 56911
., ... , ... , ...
I am reading this data from .csv using pandas read_csv function:
data = pd.read_csv("Data/led.csv", index_col=0)
Providing the index_col argument to this function issues the following (numpy) warning:
C:\Program Files\Python\lib\site-packages\numpy\lib\arraysetops.py:466:
FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
mask |= (ar1 == a)
What is the proper way of reading a .csv file with existing index using Pandas?
Any insight on the warning is much appreciated...