I had a go at vectorizing it.
import numpy as np
from itertools import combinations
np.random.seed(1)
vector_data = np.random.randn(3, 3)
v1, v2, v3 = vector_data[0], vector_data[1], vector_data[2]
def similarities_vectorized(vector_data):
norms = np.linalg.norm(vector_data, axis=1)
combs = np.stack(combinations(range(vector_data.shape[0]),2))
similarities = (vector_data[combs[:,0]]*vector_data[combs[:,1]]).sum(axis=1)/norms[combs][:,0]/norms[combs][:,1]
return combs, similarities
combs, similarities = similarities_vectorized(vector_data)
for comb, similarity in zip(combs, similarities):
print(comb, similarity)
Output:
[0 1] -0.217095007411
[0 2] 0.894174618451
[1 2] -0.630555641519
Compare result with code from Question:
def calculate_similarity(v1, v2):
"""
Calculate cosine distance between two vectors
"""
n1 = np.linalg.norm(v1)
n2 = np.linalg.norm(v2)
return np.dot(v1, v2) / n1 / n2
def calculate_simularities(vectors):
similarities = {}
for ith_entity, ith_vector in vectors.items():
for jth_entity, jth_vector in vectors.items():
if ith_entity == jth_entity:
continue
if (ith_entity, jth_entity) in similarities.keys() or (jth_entity, ith_entity) in similarities.keys():
continue
similarities[(ith_entity, jth_entity)] = calculate_similarity(ith_vector, jth_vector)
return similarities
vectors = {'A': v1, 'B': v2, 'C': v3}
print(calculate_simularities(vectors))
Output:
{('A', 'B'): -0.21709500741113338, ('A', 'C'): 0.89417461845058566, ('B', 'C'): -0.63055564151883581}
The vectorized version was about 3.3 times faster when I ran it on a set of 300 vectors.
UPDATE:
This version is about 50 times faster than the original:
def similarities_vectorized2(vector_data):
norms = np.linalg.norm(vector_data, axis=1)
combs = np.fromiter(combinations(range(vector_data.shape[0]),2), dtype='i,i')
similarities = (vector_data[combs['f0']]*vector_data[combs['f1']]).sum(axis=1)/norms[combs['f0']]/norms[combs['f1']]
return combs, similarities
combs, similarities = similarities_vectorized2(vector_data)
for comb, similarity in zip(combs, similarities):
print(comb, similarity)
Output:
(0, 1) -0.217095007411
(0, 2) 0.894174618451
(1, 2) -0.630555641519