I have a datetime
issue where I am trying to match up a dataframe
with dates as index values.
For example, I have dr
which is an array of numpy.datetime
.
dr = [numpy.datetime64('2014-10-31T00:00:00.000000000'),
numpy.datetime64('2014-11-30T00:00:00.000000000'),
numpy.datetime64('2014-12-31T00:00:00.000000000'),
numpy.datetime64('2015-01-31T00:00:00.000000000'),
numpy.datetime64('2015-02-28T00:00:00.000000000'),
numpy.datetime64('2015-03-31T00:00:00.000000000')]
Then I have dataframe with returndf
with dates as index values
print(returndf)
1 2 3 4 5 6 7 8 9 10
10/31/2014 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
11/30/2014 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Please ignore the missing values
Whenever I try to match date in dr
and dataframe returndf
, using the following code for just 1 month returndf.loc[str(dr[1])]
,
I get an error
KeyError: 'the label [2014-11-30T00:00:00.000000000] is not in the [index]'
I would appreciate if someone can help with me on how to convert numpy.datetime64('2014-10-31T00:00:00.000000000')
into 10/31/2014
so that I can match it to the data frame index value.
Thank you,