How to improve the distance calculation on the 2 separated datasets?
This is the code:
X = [ 3.6 79
1.8 54
3.333 74
2.283 62
4.533 85
2.883 55
4.7 88
3.6 85
1.95 51
4.35 85
1.833 54
3.917 84
4.2 78
1.75 47
4.7 83
2.167 52
1.75 62
4.8 84
1.6 52
4.25 79
1.8 51
1.75 47
3.45 78
3.067 69
4.533 74
3.6 83
1.967 55
4.083 76
3.85 78
4.433 79
4.3 73
4.467 77
3.367 66
4.033 80
3.833 74
2.017 52
1.867 48
4.833 80
1.833 59
4.783 90 ]
clc;
close all;
figure;
h(1) = plot(X(:,1),X(:,2),'bx');
hold on;
X1 = X(1:3,:);
X2 = X(4:40,:);
h(2) = plot(X1(1:3,1), X1(1:3,2),'rs','MarkerSize',10);
k=5;
[D2 ind] = sort(squeeze(sqrt(sum(bsxfun(@minus,X2,permute(X1,[3 2 1])).^2,2))))
ind_closest = ind(1:k,:)
x_closest = X(ind_closest,:)
for j = 1:length(x_closest);
h(3) =plot(x_closest(j,1),x_closest(j,2),'ko','MarkerSize',10);
end
The output is shown as in the picture below:
The problem is, the code does not pick the closest data points of red squared data points. I also tried to use pdist2 function from statistical toolbox,the result yields similar with the bsxfun function that i applied in my code. I'm not sure which part in the code need to improve so that i can pick the data points that closest to the target. Really appreciate if anyone can help me to improve my code