When I see a massive list, my mind always goes first to divide-and-conquer.
I won't be writing out a fully-fleshed algorithm here, just a skeleton. You seem like you have enough of a clue to take decent idea and run with it. I think I only need to point you in the right direction. With that said...
We'd need an RNG that can return a suitably-distributed value for how many masked values could potentially be below a given cut point in the list. I'll use the halfway point of the list for said cut. Some statistician can probably set you up with the right RNG function. (Anyone?) I don't want to assume it's just uniformly random [0..mask_count), but it might be.
Given that, you might do something like this:
// the magic RNG your stats homework will provide
int random_split_sub_count_lo( int count, int sub_count, int split_point );
void mask_random_sublist( int *list, int list_count, int sub_count )
{
if (list_count > SOME_SMALL_THRESHOLD)
{
int list_count_lo = list_count / 2; // arbitrary
int list_count_hi = list_count - list_count_lo;
int sub_count_lo = random_split_sub_count_lo( list_count, mask_count, list_count_lo );
int sub_count_hi = list_count - sub_count_lo;
mask( list, list_count_lo, sub_count_lo );
mask( list + sub_count_lo, list_count_hi, sub_count_hi );
}
else
{
// insert here some simple/obvious/naive implementation that
// would be ludicrous to use on a massive list due to complexity,
// but which works great on very small lists. I'm assuming you
// can do this part yourself.
}
}
Assuming you can find someone more informed on statistical distributions than I to provide you with a lead on the randomizer you need to split the sublist count, this should give you O(n) performance, with 'n' being the number of masked entries. Also, since the recursion is set up to traverse the actual physical array in constantly-ascending-index order, cache usage should be as optimal as it's gonna get.
Caveat: There may be minor distribution issues due to the discrete nature of the list versus the 30% fraction as you recurse down and down to smaller list sizes. In practice, I suspect this may not matter much, but whatever person this solution is meant for may not be satisfied that the random distribution is truly uniform when viewed under the microscope. YMMV, I guess.