Dict = {'Things' : {'Car':'Lambo', 'Home':'NatureVilla', 'Gadgets':{'Laptop':{'Programs':{'Data':'Excel', 'Officework': 'Word', 'Coding':{'Python':'PyCharm', 'Java':'Eclipse', 'Others': 'SublimeText'}, 'Wearables': 'SamsungGear', 'Smartphone': 'Nexus'}, 'clothes': 'ArmaaniSuit', 'Bags':'TravelBags'}}}}
d = {(i,j,k,l,m,n): Dict[i][j][k][l][m][n]
for i in Dict.keys()
for j in Dict[i].keys()
for k in Dict[j].keys()
for l in Dict[k].keys()
for m in Dict[l].keys()
for n in Dict[n].keys()
}
mux = pd.MultiIndex.from_tuples(d.keys())
df = pd.DataFrame(list(d.values()), index=mux)
print (df)
What I have already done: I tried to Multiindex this Irregular Data using pandas but I am getting KeyError at 'Car'. Then I tried to handle exceptions and tried to PASS it but then it results in a Syntax Error. So May be I lost the direction. If there is any other module or way I can index this irregular data and put it in a table somehow. I have a chunk of raw data like this.
What I am trying to do: I wanted to use this data for printing in QTableView which is from PyQt5 (Making a program with GUI).
Conditions: This Data keeps on updating every hour from an API.
What I have thought till now: May be I can append all this data to MySQL. But then when this data updates from API, only Values will change, rest of the KEYS will be the same. But then It will require more space.
References: How to convert a 3-level dictionary to a desired format?
How to build a MultiIndex Pandas DataFrame from a nested dictionary with lists
Any Help will be appreciated. Thanks for reading the question.