The mpl_toolkits.axisartist
has the option to plot a plot similar to the desired one. The following is a slightly modified version of the example from the mpl_toolkits.axisartist tutorial:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
from mpl_toolkits.axisartist import SubplotHost, ParasiteAxesAuxTrans
from mpl_toolkits.axisartist.grid_helper_curvelinear import GridHelperCurveLinear
import mpl_toolkits.axisartist.angle_helper as angle_helper
from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D
# PolarAxes.PolarTransform takes radian. However, we want our coordinate
# system in degree
tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()
# polar projection, which involves cycle, and also has limits in
# its coordinates, needs a special method to find the extremes
# (min, max of the coordinate within the view).
# 20, 20 : number of sampling points along x, y direction
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
lon_cycle=360,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(0, np.inf),)
grid_locator1 = angle_helper.LocatorDMS(36)
tick_formatter1 = angle_helper.FormatterDMS()
grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1
)
fig = plt.figure(1, figsize=(7, 4))
fig.clf()
ax = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)
# make ticklabels of right invisible, and top axis visible.
ax.axis["right"].major_ticklabels.set_visible(False)
ax.axis["right"].major_ticks.set_visible(False)
ax.axis["top"].major_ticklabels.set_visible(True)
# let left axis shows ticklabels for 1st coordinate (angle)
ax.axis["left"].get_helper().nth_coord_ticks = 0
# let bottom axis shows ticklabels for 2nd coordinate (radius)
ax.axis["bottom"].get_helper().nth_coord_ticks = 1
fig.add_subplot(ax)
## A parasite axes with given transform
## This is the axes to plot the data to.
ax2 = ParasiteAxesAuxTrans(ax, tr)
## note that ax2.transData == tr + ax1.transData
## Anything you draw in ax2 will match the ticks and grids of ax1.
ax.parasites.append(ax2)
intp = cbook.simple_linear_interpolation
ax2.plot(intp(np.array([150, 230]), 50),
intp(np.array([9., 3]), 50),
linewidth=2.0)
ax.set_aspect(1.)
ax.set_xlim(-12, 1)
ax.set_ylim(-5, 5)
ax.grid(True, zorder=0)
wp = plt.Rectangle((0,-5),width=1,height=10, facecolor="w", edgecolor="none")
ax.add_patch(wp)
ax.axvline(0, color="grey", lw=1)
plt.show()
