I thought I`d first share this here to have your opinions before doing anything else. I found out while designing an algorithm that the gcc compiled code performance for some simple code was catastrophic compared to clang's.
How to reproduce
Create a test.c
file containing this code :
#include <sys/stat.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
int main(int argc, char *argv[]) {
const uint64_t size = 1000000000;
const size_t alloc_mem = size * sizeof(uint8_t);
uint8_t *mem = (uint8_t*)malloc(alloc_mem);
for (uint_fast64_t i = 0; i < size; i++)
mem[i] = (uint8_t) (i >> 7);
uint8_t block = 0;
uint_fast64_t counter = 0;
uint64_t total = 0x123456789abcdefllu;
uint64_t receiver = 0;
for(block = 1; block <= 8; block ++) {
printf("%u ...\n", block);
counter = 0;
while (counter < size - 8) {
__builtin_memcpy(&receiver, &mem[counter], block);
receiver &= (0xffffffffffffffffllu >> (64 - ((block) << 3)));
total += ((receiver * 0x321654987cbafedllu) >> 48);
counter += block;
}
}
printf("=> %llu\n", total);
return EXIT_SUCCESS;
}
gcc
Compile and run :
gcc-7 -O3 test.c
time ./a.out
1 ...
2 ...
3 ...
4 ...
5 ...
6 ...
7 ...
8 ...
=> 82075168519762377
real 0m23.367s
user 0m22.634s
sys 0m0.495s
info :
gcc-7 -v
Using built-in specs.
COLLECT_GCC=gcc-7
COLLECT_LTO_WRAPPER=/usr/local/Cellar/gcc/7.3.0/libexec/gcc/x86_64-apple-darwin17.4.0/7.3.0/lto-wrapper
Target: x86_64-apple-darwin17.4.0
Configured with: ../configure --build=x86_64-apple-darwin17.4.0 --prefix=/usr/local/Cellar/gcc/7.3.0 --libdir=/usr/local/Cellar/gcc/7.3.0/lib/gcc/7 --enable-languages=c,c++,objc,obj-c++,fortran --program-suffix=-7 --with-gmp=/usr/local/opt/gmp --with-mpfr=/usr/local/opt/mpfr --with-mpc=/usr/local/opt/libmpc --with-isl=/usr/local/opt/isl --with-system-zlib --enable-checking=release --with-pkgversion='Homebrew GCC 7.3.0' --with-bugurl=https://github.com/Homebrew/homebrew-core/issues --disable-nls
Thread model: posix
gcc version 7.3.0 (Homebrew GCC 7.3.0)
So we get about 23s of user time. Now let's do the same with cc (clang on macOS) :
clang
cc -O3 test.c
time ./a.out
1 ...
2 ...
3 ...
4 ...
5 ...
6 ...
7 ...
8 ...
=> 82075168519762377
real 0m9.832s
user 0m9.310s
sys 0m0.442s
info :
Apple LLVM version 9.0.0 (clang-900.0.39.2)
Target: x86_64-apple-darwin17.4.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
That's more than 2.5x faster !! Any thoughts ?
I replaced the __builtin_memcpy
function by memcpy
to test things out and this time the compiled code runs in about 34s on both sides - consistent and slower as expected.
It would appear that the combination of __builtin_memcpy
and bitmasking is interpreted very differently by both compilers.
I had a look at the assembly code, but couldn't see anything standing out that would explain such a drop in performance as I'm not an asm expert.
Edit 03-05-2018 : Posted this bug : https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84719.