In my textbook I see the following:
Definition of the order of an algorithm
Algorithm A is order f(n) -- denoted O(f(n)) -- if constants k and n0 exist such that A requires no more than k * f(n) time units to solve a problem of size n >= n0.
I understand: Time requirements for different complexity classes grow at different rates. For instance, with increasing values of n, the time required for O(n) grows much more slowly than O(n2), which grows more slowly than O(n3), and so forth.
I do not understand: How k and n0 fit into this definition.
What is n0? Specifically, why does n have subscript 0, what does this subscript mean?
With question 1 answered, what does a 'a problem of size n >= n0' mean? A larger data set? More loop repetitions? A growing problem size?
What is k then? Why is k being multiplied by f(n)? What does k have to do with increasing the problem size - n?
I've already looked at: