Pandas has a widely-used groupby facility to split up a DataFrame based on a corresponding mapping, from which you can apply a calculation on each subgroup and recombine the results.
Can this be done flexibly in NumPy without a native Python for-loop? With a Python loop, this would look like:
>>> import numpy as np
>>> X = np.arange(10).reshape(5, 2)
>>> groups = np.array([0, 0, 0, 1, 1])
# Split up elements (rows) of `X` based on their element wise group
>>> np.array([X[groups==i].sum() for i in np.unique(groups)])
array([15, 30])
Above 15 is the sum of the first three rows of X
, and 30 is the sum of the remaining two.
By "flexibly,” I just mean that we aren't focusing on one particular computation such as sum, count, maximum, etc, but rather passing any computation to the grouped arrays.
If not, is there a faster approach than the above?