I'm a big fan of mlxtend's plot_decision_regions
function, (http://rasbt.github.io/mlxtend/#examples , https://stackoverflow.com/a/43298736/1870832)
It accepts an X
(just two columns at a time), y
, and (fitted) classifier clf
object, and then provides a pretty awesome visualization of the relationship between model predictions, true y-values, and a pair of independent variables.
A couple restrictions:
X
and y
have to be numpy arrays, and clf
needs to have a predict()
method. Fair enough. My problem is that in my case, the classifier clf
object I would like to visualize has already been fitted on a Pandas DataFrame...
import numpy as np
import pandas as pd
import xgboost as xgb
import matplotlib
matplotlib.use('Agg')
from mlxtend.plotting import plot_decision_regions
import matplotlib.pyplot as plt
# Create arbitrary dataset for example
df = pd.DataFrame({'Planned_End': np.random.uniform(low=-5, high=5, size=50),
'Actual_End': np.random.uniform(low=-1, high=1, size=50),
'Late': np.random.random_integers(low=0, high=2, size=50)}
)
# Fit a Classifier to the data
# This classifier is fit on the data as a Pandas DataFrame
X = df[['Planned_End', 'Actual_End']]
y = df['Late']
clf = xgb.XGBClassifier()
clf.fit(X, y)
So now when I try to use plot_decision_regions
passing X/y as numpy arrays...
# Plot Decision Region using mlxtend's awesome plotting function
plot_decision_regions(X=X.values,
y=y.values,
clf=clf,
legend=2)
I (understandably) get an error that the model can't find the column names of the dataset it was trained on
ValueError: feature_names mismatch: ['Planned_End', 'Actual_End'] ['f0', 'f1']
expected Planned_End, Actual_End in input data
training data did not have the following fields: f1, f0
In my actual case, it would be a big deal to avoid training our model on Pandas DataFrames. Is there a way to still produce decision_regions
plots for a classifier trained on a Pandas DataFrame?