I have a data set that looks like
"","OBSERV","DIOX","logDIOX","OXYGEN","LOAD","PRSEK","PLANT","TIME","LAB"
"1",1011,984.06650389,6.89169348002254,"L","H","L","RENO_N","1","KK"
"2",1022,1790.7973641,7.49041625445373,"H","H","L","RENO_N","1","USA"
"3",1031,661.95870145,6.4952031694744,"L","H","H","RENO_N","1","USA"
"4",1042,978.06853583,6.88557974511529,"H","H","H","RENO_N","1","KK"
"5",1051,270.92290942,5.60183431332639,"N","N","N","RENO_N","1","USA"
"6",1062,402.98269729,5.99889362626069,"N","N","N","RENO_N","1","USA"
"7",1071,321.71945701,5.77367991426247,"H","L","L","RENO_N","1","KK"
"8",1082,223.15260359,5.40785585845064,"L","L","L","RENO_N","1","USA"
"9",1091,246.65350151,5.507984523849,"H","L","H","RENO_N","1","USA"
"10",1102,188.48323034,5.23900903921703,"L","L","H","RENO_N","1","KK"
"11",1141,267.34994025,5.58855843790491,"N","N","N","RENO_N","1","KK"
"12",1152,452.10355987,6.11391126834609,"N","N","N","RENO_N","1","KK"
"13",2011,2569.6672555,7.85153169693888,"N","N","N","KARA","1","USA"
"14",2021,604.79620572,6.40489155123453,"N","N","N","KARA","1","KK"
"15",2031,2610.4804449,7.86728956188212,"L","H",NA,"KARA","1","KK"
"16",2032,3789.7097503,8.24004471210954,"L","H",NA,"KARA","1","USA"
"17",2052,338.97054188,5.82591320649553,"L","L","L","KARA","1","KK"
"18",2061,391.09027375,5.96893841249289,"H","L","H","KARA","1","USA"
"19",2092,410.04420258,6.01626496505788,"N","N","N","KARA","1","USA"
"20",2102,313.51882368,5.74785940190679,"N","N","N","KARA","1","KK"
"21",2112,1242.5931417,7.12495571830002,"H","H","H","KARA","1","KK"
"22",2122,1751.4827969,7.46821802066524,"H","H","L","KARA","1","USA"
"23",3011,60.48026048,4.10231703874031,"N","N","N","RENO_S","1","KK"
"24",3012,257.27729731,5.55015448107691,"N","N","N","RENO_S","1","USA"
"25",3021,46.74282552,3.84466077914493,"N","N","N","RENO_S","1","KK"
"26",3022,73.605375516,4.29871805996994,"N","N","N","RENO_S","1","KK"
"27",3031,108.25433812,4.68448344109116,"H","H","L","RENO_S","1","KK"
"28",3032,124.40704234,4.82355878915293,"H","H","L","RENO_S","1","USA"
"29",3042,123.66859296,4.81760535031397,"L","H","L","RENO_S","1","KK"
"30",3051,170.05332632,5.13611207209694,"N","N","N","RENO_S","1","USA"
"31",3052,95.868704018,4.56297958887925,"N","N","N","RENO_S","1","KK"
"32",3061,202.69261215,5.31169060558111,"N","N","N","RENO_S","1","USA"
"33",3062,70.686307069,4.25825187761015,"N","N","N","RENO_S","1","USA"
"34",3071,52.034715526,3.95191110210073,"L","H","H","RENO_S","1","KK"
"35",3072,93.33525462,4.53619789950355,"L","H","H","RENO_S","1","USA"
"36",3081,121.47464906,4.79970559129829,"H","H","H","RENO_S","1","USA"
"37",3082,94.833869239,4.55212661590867,"H","H","H","RENO_S","1","KK"
"38",3091,68.624596439,4.22865101914209,"H","L","L","RENO_S","1","USA"
"39",3092,64.837097371,4.17187792984139,"H","L","L","RENO_S","1","KK"
"40",3101,32.351569811,3.47666254561192,"L","L","L","RENO_S","1","KK"
"41",3102,29.285124102,3.37707967726539,"L","L","L","RENO_S","1","USA"
"42",3111,31.36974463,3.44584388158928,"L","L","H","RENO_S","1","USA"
"43",3112,28.127853881,3.33676032670116,"L","L","H","RENO_S","1","KK"
"44",3121,91.825330102,4.51988818660262,"H","L","H","RENO_S","1","KK"
"45",3122,136.4559307,4.91600171048243,"H","L","H","RENO_S","1","USA"
"46",4011,126.11889968,4.83722511024933,"H","L","H","RENO_N","2","KK"
"47",4022,76.520259821,4.33755554003153,"L","L","L","RENO_N","2","KK"
"48",4032,93.551979795,4.53851721545715,"L","L","H","RENO_N","2","USA"
"49",4041,207.09703422,5.33318744777751,"H","L","L","RENO_N","2","USA"
"50",4052,383.44185307,5.94918798759058,"N","N","N","RENO_N","2","USA"
"51",4061,156.79345897,5.05492939129363,"N","N","N","RENO_N","2","USA"
"52",4071,322.72413197,5.77679787769979,"L","H","L","RENO_N","2","USA"
"53",4082,554.05710342,6.31726775620079,"H","H","H","RENO_N","2","USA"
"54",4091,122.55552697,4.80856420867156,"N","N","N","RENO_N","2","KK"
"55",4102,112.70050456,4.72473389805434,"N","N","N","RENO_N","2","KK"
"56",4111,94.245481423,4.54590288271731,"L","H","H","RENO_N","2","KK"
"57",4122,323.16498582,5.77816298482521,"H","H","L","RENO_N","2","KK"
I define a linear model in R
using lm
as
lm1 <- lm(logDIOX ~ 1 + OXYGEN + LOAD + PLANT + TIME + LAB, data=data)
and I want to interpret the estimated coefficients. However, when I extract the coefficients I get multiple 'NAs' (I'm assuming it's due to linear dependencies among the variables). How can I then interpret the coefficients? I only have one intercept that somehow represents one of the levels of each of the included factors in the model. Is it possible to get an estimate for each factor level?
> summary(lm1)
Coefficients:
Call:
lm(formula = logDIOX ~ OXYGEN + LOAD + PLANT + TIME + LAB, data = data)
Residuals:
Min 1Q Median 3Q Max
-0.90821 -0.32102 -0.08993 0.27311 0.97758
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.2983 0.2110 34.596 < 2e-16 ***
OXYGENL -0.4086 0.1669 -2.449 0.017953 *
OXYGENN -0.7567 0.1802 -4.199 0.000113 ***
LOADL -1.0645 0.1675 -6.357 6.58e-08 ***
LOADN NA NA NA NA
PLANTRENO_N -0.6636 0.2174 -3.052 0.003664 **
PLANTRENO_S -2.3452 0.1929 -12.158 < 2e-16 ***
TIME2 -0.9160 0.2065 -4.436 5.18e-05 ***
LABUSA 0.3829 0.1344 2.849 0.006392 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5058 on 49 degrees of freedom
Multiple R-squared: 0.8391, Adjusted R-squared: 0.8161
F-statistic: 36.5 on 7 and 49 DF, p-value: < 2.2e-16