I have a pandas series with this type of format:
date
2017-03-15 1236.43
2017-03-16 1118.96
2017-03-17 1063.48
2017-03-18 940.18
2017-03-19 967.31
2017-03-20 1005.05
2017-03-21 1043.87
2017-03-22 997.78
2017-03-23 1022.02
2017-03-24 927.35
2017-03-25 890.43
2017-03-26 946.65
2017-03-27 961.80
2017-03-28 1015.45
...
2018-03-06 10589.28
2018-03-07 9470.73
2018-03-08 9534.02
Name: BTC, Length: 1382, dtype: float64
I can't find a good way to split this by month, I have already tried with groupby and it gave me a pretty good output but it also assembles datas from different years and that's a problem
IN[]: dflist_BTC = []
for group in data.BTC.groupby(df.index.month):
dflist_BTC.append(group[1])
print(dflist_BTC)
OUT[]: [date
2018-01-01 12877.67
2018-01-02 12934.16
2018-01-03 14579.71
2018-01-04 14244.67
...
2018-01-28 11407.94
2018-01-29 11089.52
2018-01-30 9871.21
2018-01-31 9698.13
Name: BTC, dtype: float64, date
2018-02-01 8726.95
2018-02-02 7786.20
2018-02-03 8194.68
...
2018-02-27 10154.24
2018-02-28 10303.14
Name: BTC, dtype: float64, date
2017-03-15 1236.43
2017-03-16 1118.96
2017-03-17 1063.48
2017-03-18 940.18
2017-03-19 967.31
2017-03-20 1005.05
2017-03-21 1043.87
2017-03-22 997.78
2017-03-23 1022.02
2017-03-24 927.35
2017-03-25 890.43
2017-03-26 946.65
2017-03-27 961.80
2017-03-28 1015.45
2017-03-29 1008.34
2017-03-30 1020.93
2017-03-31 1035.18
#Here there is the problem, it combines 2017 and 2018
2018-03-01 10247.56
2018-03-02 10801.45
2018-03-03 11043.12
2018-03-04 11084.01
2018-03-05 11431.55
2018-03-06 10589.28
2018-03-07 9470.73
2018-03-08 9534.02
Name: BTC, dtype: float64, date
2017-04-01 1067.47
2017-04-02 1074.21
...
2017-12-30 11962.09
2017-12-31 12359.43
Name: BTC, dtype: float64]
I'm new in Stackoverflow and in coding in general, so I'm sorry if I didn't explain myself in a better way. I'll be grateful if you can help me