I wrote this code that simply sums a list of n numbers, to practice with floating point arithmetic, and I don't understand this:
I am working with float, this means I have 7 digits of precision, therefore, if I do the operation 10002*10002=100040004, the result in data type float will be 100040000.000000, since I lost any digit beyond the 7th (the program still knows the exponent, as seen here).
If the input in this program is
3
10000
10001
10002
You will see that, however, when this program computes 30003*30003=900180009 we have 30003*30003=900180032.000000
I understand this 32 appears becasue I am working with float, and my goal is not to make the program more precise but understand why this is happening. Why is it 900180032.000000 and not 900180000.000000? Why does this decimal noise (32) appear in 30003*30003 and not in 10002*10002 even when the magnitude of the numbers are the same? Thank you for your time.
#include <stdio.h>
#include <math.h>
#define MAX_SIZE 200
int main()
{
int numbers[MAX_SIZE];
int i, N;
float sum=0;
float sumb=0;
float sumc=0;
printf("introduce n" );
scanf("%d", &N);
printf("write %d numbers:\n", N);
for(i=0; i<N; i++)
{
scanf("%d", &numbers[i]);
}
int r=0;
while (r<N){
sum=sum+numbers[r];
sumb=sumb+(numbers[r]*numbers[r]);
printf("sum is %f\n",sum);
printf("sumb is %f\n",sumb);
r++;
}
sumc=(sum*sum);
printf("sumc is %f\n",sumc);
}