This is to define a custom loss function in Keras. The code is as follows:
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
def custom_loss_function(y_true, y_pred):
a_numpy_y_true_array = K.eval(y_true)
a_numpy_y_pred_array = K.eval(y_pred)
# some million dollar worth custom loss that needs numpy arrays to be added here...
return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
def build_model():
model= Sequential()
model.add(Dense(16, input_shape=(701, ), activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=custom_loss_function, optimizer=Adam(lr=0.005), metrics=['accuracy'])
return model
model = build_model()
early_stop = EarlyStopping(monitor="val_loss", patience=1)
model.fit(kpca_X, y, epochs=50, validation_split=0.2, callbacks=[early_stop], verbose=False)
The above code returns following error:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
D:\milind.dalvi\personal\_python\Anaconda3\lib\contextlib.py in __exit__(self, type, value, traceback)
88 try:
---> 89 next(self.gen)
90 except StopIteration:
D:\milind.dalvi\personal\_python\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:
InvalidArgumentError: You must feed a value for placeholder tensor 'dense_84_target' with dtype float and shape [?,?]
[[Node: dense_84_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
So anybody knows how we could convert y_true
and y_pred
which is Tensor("dense_84_target:0", shape=(?, ?), dtype=float32)
into numpy array
EDIT: --------------------------------------------------------
Basically what I expect to write in loss function is something as follows:
def custom_loss_function(y_true, y_pred):
classifieds = []
for actual, predicted in zip(y_true, y_pred):
if predicted == 1:
classifieds.append(actual)
classification_score = abs(classifieds.count(0) - classifieds.count(1))
return SOME_MAGIC_FUNCTION_TO_CONVERT_INT_TO_TENSOR(classification_score)