The situation si as follows. I am trying to implement a linear voxel search in a glsl shader for efficient voxel ray tracing. In toehr words, I have a 3D texture and I am ray tracing on it but I am trying to ray trace such that I only ever check voxels intersected by the ray once.
To this effect I have written a program with the following results:
Not efficient but correct:
The above image was obtained by adding a small epsilon ray multiple times and sampling from the texture on each iteration. Which produces the correct results but it's very inefficient.
That would look like:
loop{
start += direction*0.01;
sample(start);
}
To make it efficient I decided to instead implement the following lookup function:
float bound(float val)
{
if(val >= 0)
return voxel_size;
return 0;
}
float planeIntersection(vec3 ray, vec3 origin, vec3 n, vec3 q)
{
n = normalize(n);
if(dot(ray,n)!=0)
return (dot(q,n)-dot(n,origin))/dot(ray,n);
return -1;
}
vec3 get_voxel(vec3 start, vec3 direction)
{
direction = normalize(direction);
vec3 discretized_pos = ivec3((start*1.f/(voxel_size))) * voxel_size;
vec3 n_x = vec3(sign(direction.x), 0,0);
vec3 n_y = vec3(0, sign(direction.y),0);
vec3 n_z = vec3(0, 0,sign(direction.z));
float bound_x, bound_y, bound_z;
bound_x = bound(direction.x);
bound_y = bound(direction.y);
bound_z = bound(direction.z);
float t_x, t_y, t_z;
t_x = planeIntersection(direction, start, n_x,
discretized_pos+vec3(bound_x,0,0));
t_y = planeIntersection(direction, start, n_y,
discretized_pos+vec3(0,bound_y,0));
t_z = planeIntersection(direction, start, n_z,
discretized_pos+vec3(0,0,bound_z));
if(t_x < 0)
t_x = 1.f/0.f;
if(t_y < 0)
t_y = 1.f/0.f;
if(t_z < 0)
t_z = 1.f/0.f;
float t = min(t_x, t_y);
t = min(t, t_z);
return start + direction*t;
}
Which produces the following result:
Notice the triangle aliasing on the left side of some surfaces.
It seems this aliasing occurs because some coordinates are not being set to their correct voxel.
For example modifying the truncation part as follows:
vec3 discretized_pos = ivec3((start*1.f/(voxel_size)) - vec3(0.1)) * voxel_size;
Creates:
So it has fixed the issue for some surfaces and caused it for others.
I wanted to know if there is a way in which I can correct this truncation so that this error does not happen.
Update:
I have narrowed down the issue a bit. Observe the following image:
The numbers represent the order in which I expect the boxes to be visited.
As you can see for some of the points the sampling of the fifth box seems to be ommitted.
The following is the sampling code:
vec4 grabVoxel(vec3 pos)
{
pos *= 1.f/base_voxel_size;
pos.x /= (width-1);
pos.y /= (depth-1);
pos.z /= (height-1);
vec4 voxelVal = texture(voxel_map, pos);
return voxelVal;
}