This problem has two kinds of solutions: the simple, and the efficient. I will not cover the efficient (because it is not simple), though I will hint on it.
But first, the part where you extract the delimiter
and body
parts of the input, may be simplified with Data.List.break
:
delims = splitOn "/" . fst . break (== '\n') -- Presuming the delimiters are delimited with
-- a slash.
body = snd . break (== '\n')
In any way, we may reduce this problem to finding the positions of all the given patterns in a given string. (By saying "string", I do not mean the haskell String
. Rather, I mean an arbitrarily long sequence (or even an infinite stream) of any symbols for which an Eq
uality relation is defined, which is typed in Haskell as Eq a => [a]
. I hope this is not too confusing.) As soon as we have the positions, we may slice the string to our hearts' content. If we want to deal with an infinite stream, we must obtain the positions incrementally, and yield the results as we go, which is a restriction that must be kept in mind. Haskell is equipped well enough to handle the stream case as well as the finite string.
A simple approach is to cast isPrefixOf
on the string, for each of the patterns.
- If some of them matches, we replace it with a
Nothing
.
- Otherwise we mark the first symbol as
Just
and move to the next position.
Thus, we will have replaced all the different delimiters by a single one: Nothing
. We may then readily slice the string by it.
This is fairly idiomatic, and I will bring the code to your judgement shortly. The problem with this approach is that it is inefficient: in fact, if a pattern failed to match, we would rather advance by more than one symbol.
It would be more efficient to base our work on the research that has been made into finding patterns in a string; this problem is well known and there are great, intricate algorithms that solve it an order of magnitude faster. These algorithms are designed to work with a single pattern, so some work must be put into adapting them to our case; however, I believe they are adaptable. The simplest and eldest of such algorithms is the KMP, and it is already encoded in Haskell. You may wish to take arms and generalize it − a quick path to some amount of fame.
Here is the code:
module SplitSubstr where
-- stackoverflow.com/questions/49228467
import Data.List (unfoldr, isPrefixOf, elemIndex)
import Data.List.Split (splitWhen) -- Package `split`.
import Data.Maybe (catMaybes, isNothing)
-- | Split a (possibly infinite) string at the occurrences of any of the given delimiters.
--
-- λ take 10 $ splitOnSubstrs ["||", "***"] "la||la***fa"
-- ["la","la","fa"]
--
-- λ take 10 $ splitOnSubstrs ["||", "***"] (cycle "la||la***fa||")
-- ["la","la","fa","la","la","fa","la","la","fa","la"]
--
splitOnSubstrs :: [String] -> String -> [String]
splitOnSubstrs delims
= fmap catMaybes -- At this point, there will be only `Just` elements left.
. splitWhen isNothing -- Now we may split at nothings.
. unfoldr f -- Replace the occurences of delimiters with a `Nothing`.
where
-- | This is the base case. It will terminate the `unfoldr` process.
f [ ] = Nothing
-- | This is the recursive case. It is divided into 2 cases:
-- * One of the delimiters may match. We will then replace it with a Nothing.
-- * Otherwise, we will `Just` return the current element.
--
-- Notice that, if there are several patterns that match at this point, we will use the first one.
-- You may sort the patterns by length to always match the longest or the shortest. If you desire
-- more complicated behaviour, you must plug a more involved logic here. In any way, the index
-- should point to one of the patterns that matched.
--
-- vvvvvvvvvvvvvv
f body@(x:xs) = case elemIndex True $ (`isPrefixOf` body) <$> delims of
Just index -> return (Nothing, drop (length $ delims !! index) body)
Nothing -> return (Just x, xs)
It might happen that you will not find this code straightforward. Specifically, the unfoldr
part is somewhat dense, so I will add a few words about it.
unfoldr f
is an embodiment of a recursion scheme. f
is a function that may chip a part from the body
: f :: (body -> Maybe (chip, body))
.
- As long as it keeps chipping,
unfoldr
keeps applying it to the body
. This is called recursive case.
- Once it fails (returning
Nothing
), unfoldr
stops and hands you all the chips it thus collected. This is called base case.
In our case, f
takes symbols from the string, and fails once the string is empty.
That's it. I hope you send me a postcard when you receive a Turing award for a fast splitting algorithm.