I am not sure if it's more math or more programming question. If it's math please tell me.
I know there is a lot of ready to use for free FFT projects. But I try to understand FFT method. Just for fun and for studying it. So I made both algorithms - DFT and FFT, to compare them.
But I have problem with my FFT. It seems there is not big difference in efficiency. My FFT is only little bit faster then DFT (in some cases it's two times faster, but it's max acceleration)
In most articles about FFT, there is something about bit reversal. But I don't see the reason to use bit reversing. Probably it's the case. I don't understand it. Please help me. What I do wrong?
This is my code (you can copy it here and see how it works - online compiler):
#include <complex>
#include <iostream>
#include <math.h>
#include <cmath>
#include <vector>
#include <chrono>
#include <ctime>
float _Pi = 3.14159265;
float sampleRate = 44100;
float resolution = 4;
float _SRrange = sampleRate / resolution; // I devide Sample Rate to make the loop smaller,
//just to perform tests faster
float bufferSize = 512;
// Clock class is for measure time to execute whole loop:
class Clock
{
public:
Clock() { start = std::chrono::high_resolution_clock::now(); }
~Clock() {}
float secondsElapsed()
{
auto stop = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(stop - start).count();
}
void reset() { start = std::chrono::high_resolution_clock::now(); }
private:
std::chrono::time_point<std::chrono::high_resolution_clock> start;
};
// Function to calculate magnitude of complex number:
float _mag_Hf(std::complex<float> sf);
// Function to calculate exp(-j*2*PI*n*k / sampleRate) - where "j" is imaginary number:
std::complex<float> _Wnk_Nc(float n, float k);
// Function to calculate exp(-j*2*PI*k / sampleRate):
std::complex<float> _Wk_Nc(float k);
int main() {
float scaleFFT = 512; // devide and conquere - if it's "1" then whole algorhitm is just simply DFT
// I wonder what is the maximum of that value. I alvays thought it should be equal to
// buffer size (number o samples) but above some value it start to work slower then DFT
std::vector<float> inputSignal; // array of input signal
inputSignal.resize(bufferSize); // how many sample we will use to calculate Fourier Transform
std::vector<std::complex<float>> _Sf; // array to store Fourier Transform value for each measured frequency bin
_Sf.resize(scaleFFT); // resize it to size which we need.
std::vector<std::complex<float>> _Hf_Db_vect; //array to store magnitude (in logarythmic dB scale)
//for each measured frequency bin
_Hf_Db_vect.resize(_SRrange); //resize it to make it able to store value for each measured freq value
std::complex<float> _Sf_I_half; // complex to calculate first half of freq range
// from 1 to Nyquist (sampleRate/2)
std::complex<float> _Sf_II_half; // complex to calculate second half of freq range
//from Nyquist to sampleRate
for(int i=0; i<(int)_Sf.size(); i++)
inputSignal[i] = cosf((float)i/_Pi); // fill the input signal with some data, no matter
Clock _time; // Start measure time
for(int freqBinK=0; freqBinK < _SRrange/2; freqBinK++) // start calculate all freq (devide by 2 for two halves)
{
for(int i=0; i<(int)_Sf.size(); i++) _Sf[i] = 0.0f; // clean all values, for next loop we need all values to be zero
for (int n=0; n<bufferSize/_Sf.size(); ++n) // Here I take all samples in buffer
{
std::complex<float> _W = _Wnk_Nc(_Sf.size()*(float)n, freqBinK);
for(int i=0; i<(int)_Sf.size(); i++) // Finally here is my devide and conquer
_Sf[i] += inputSignal[_Sf.size()*n +i] * _W; // And I see no reason to use any bit reversal, how it shoul be????
}
std::complex<float> _Wk = _Wk_Nc(freqBinK);
_Sf_I_half = 0.0f;
_Sf_II_half = 0.0f;
for(int z=0; z<(int)_Sf.size()/2; z++) // here I calculate Fourier transform for each freq
{
_Sf_I_half += _Wk_Nc(2.0f * (float)z * freqBinK) * (_Sf[2*z] + _Wk * _Sf[2*z+1]); // First half - to Nyquist
_Sf_II_half += _Wk_Nc(2.0f * (float)z *freqBinK) * (_Sf[2*z] - _Wk * _Sf[2*z+1]); // Second half - to SampleRate
// also don't see need to use reversal bit, where it shoul be??? :)
}
// Calculate magnitude in dB scale
_Hf_Db_vect[freqBinK] = _mag_Hf(_Sf_I_half); // First half
_Hf_Db_vect[freqBinK + _SRrange/2] = _mag_Hf(_Sf_II_half); // Second half
}
std::cout << _time.secondsElapsed() << std::endl; // time measuer after execution of whole loop
}
float _mag_Hf(std::complex<float> sf)
{
float _Re_2;
float _Im_2;
_Re_2 = sf.real() * sf.real();
_Im_2 = sf.imag() * sf.imag();
return 20*log10(pow(_Re_2 + _Im_2, 0.5f)); //transform magnitude to logarhytmic dB scale
}
std::complex<float> _Wnk_Nc(float n, float k)
{
std::complex<float> _Wnk_Ncomp;
_Wnk_Ncomp.real(cosf(-2.0f * _Pi * (float)n * k / sampleRate));
_Wnk_Ncomp.imag(sinf(-2.0f * _Pi * (float)n * k / sampleRate));
return _Wnk_Ncomp;
}
std::complex<float> _Wk_Nc(float k)
{
std::complex<float> _Wk_Ncomp;
_Wk_Ncomp.real(cosf(-2.0f * _Pi * k / sampleRate));
_Wk_Ncomp.imag(sinf(-2.0f * _Pi * k / sampleRate));
return _Wk_Ncomp;
}