I have calculated a linear regression using all the elements of my dataset (24), and the resulting model is IP2. Now I want to know how well that single model fits (r-squared, I am not interested in the slope and intercept) for each country in my dataset. The awful way to do is (I would need to do the following 200 times)
Country <- c("A","A","A","A","A","A","A","A","A","A","A","A","B","B","B","B","B","B","B","B","B","B","B","B")
IP <- c(55,56,59,63,67,69,69,73,74,74,79,87,0,22,24,26,26,31,37,41,43,46,46,47)
IP2 <- c(46,47,49,50,53,55,53,57,60,57,58,63,0,19,20,21,22,25,26,28,29,30,31,31)
summary(lm(IP[Country=="A"] ~ IP2[Country=="A"]))
summary(lm(IP[Country=="B"] ~ IP2[Country=="B"]))
Is there a way of calculating both r-squared at the same time? I tried with Linear Regression and group by in R as well as some others posts (Fitting several regression models with dplyr), but it did not work, and I get the same coefficients for the four groups I am working with. Any idea on what I am doing wrong or how to solve the problem? Thank you