What you want can be done with the modulus operator (%) which in Java can be used with floating point values. If you do shoeSize % 1 you will get 0.5 with half sizes and 0.0 with others, so you only have to check that value to add the "1/2" to the string representation or not. Here is a simple example
public class ShoeSize {
double size;
public ShoeSize(double size) { this.size = size; }
public String toString() {
return "" + (int)size + (size % 1 == 0.5? " 1/2" : "");
}
public static void main(String args[]) {
ShoeSize ss1 = new ShoeSize(10.5);
ShoeSize ss2 = new ShoeSize(11);
ShoeSize ss3 = new ShoeSize(11.5);
System.out.println(ss1);
System.out.println(ss2);
System.out.println(ss3);
}
}
The result of the previous code is:
10 1/2
11
11 1/2
However, you really shouldn't go with that approach. That is because depending on the way you manage the shoe size values it can lead to unpredictable results, just because arithmetic in floating point values is not precise as it is with integer values. Some simple operations like the following can introduce enough error so the result is not what you expect:
...
public static void main(String args[]) {
ShoeSize ss = new ShoeSize(10.0);
ss.size += 0.1 + 0.2 + 0.3; // Sum it half
System.out.println(ss);
}
This code now prints 10 instead of 10 1/2.
What should you do instead? Well, there are several ways. You could for example store the shoe size inside ints representing, with each unit representing a half. This internal representation will be much error-prone if you have operations like addSize or subtracts. The only problem will be reading the size of the user; the best way is probably having a list of predefined sizes for the user to choose. Here is an example:
public class ShoeSize {
int halves;
public ShoeSize(double size) { this.halves = (int)(size * 2); }
public String toString() {
return "" + (halves / 2) + (halves % 2 == 1? " 1/2": "");
}
public static void main(String args[]) {
ShoeSize ss = new ShoeSize(10.5);
System.out.println(ss);
}
}
Still better, since the shoe sizes use to be very restricted between certain values, you could represent their values in a single enum. Every enum can be constructed from the human-readable string of the size (ex. "10 1/2") and there would never be problems with invalid shoe sizes. The only problem with this approach is the need to define a custom method to obtain the next and previous shoe sizes, but here is a question that can help you with that:
[What's the best way to implement `next` and `previous` on an enum type?