I want to specify my train and test set explicitly in the terminal. Instead of specifying them in the code while running the .ipynb file in the terminal. As of now this is what I am doing.
# FOR TRAINING DATA
# LISTING OUT ALL FILES PRESENT IN FOLDER PATH
path = "C:/Users/****/****/Latest_Datasets/base_out"
files = os.listdir(path)
df = pd.DataFrame()
# APPENDING THE ALL DATA FROM THE FOLDER PATH TO DATAFRAME
for f in files:
data = pd.read_csv(f, 'Sheet1',delimiter='\t',usecols=['details','amount','category'],encoding=("utf-8"))
df = df.append(data)
df.reset_index(level=0, inplace=True)
df['index1'] = df.index
df=df[['index1','amount','details','category']]
# FOR TEST DATA
test_data=pd.read_csv('testfile.csv',
delimiter='\t',usecols=['xn_details','xn_amount','category'],encoding='utf-8')
x_train, y_train = (df.details, df.category )
x_test, y_test = (test_data.details, test_data.category)
# After this I apply my model and get my classifications for my test.details
I want to give the training data and test data as a parameter in the terminal instead of specifying in the script. How do I do this. Thanks in advance