I have a training set consisting of X and Y, The X is of shape (4000,32,1) and Y is of shape (4000,1).
I would like to create a training/validation set based on split. Here is what I have been trying to do
from sklearn.model_selection import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(test_size=0.1, random_state=23)
for train_index, valid_index in sss.split(X, Y):
X_train, X_valid = X[train_index], X[valid_index]
y_train, y_valid = Y[train_index], Y[valid_index]
Running the program gives the following error message related to the above code segment
for train_index, valid_index in sss.split(X, Y):
ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
I am not very clear about the above error message, what's the right way to create a training/validation split for the training set as above?