Is there a way to obtain the annual count values based on the state, species, and year, without using a for loop?
Name | State | Age | Species | Annual Ct
Nemo | NY | 5 | Clownfish | ?
Dora | CA | 2 | Regal Tang | ?
Lookup table:
State | Species | Year | AnnualCt
NY | Clownfish | 2012 | 500
NY | Clownfish | 2014 | 200
CA | Regal Tang | 2001 | 400
CA | Regal Tang | 2014 | 680
CA | Regal Tang | 2000 | 700
The output would be:
Name | State | Age | Species | Annual Ct
Nemo | NY | 5 | Clownfish | 200
Dora | CA | 2 | Regal Tang | 680
What I've tried:
pets <- data.frame("Name" = c("Nemo","Dora"), "State" = c("NY","CA"),
"Age" = c(5,2), "Species" = c("Clownfish","Regal Tang"))
fishes <- data.frame("State" = c("NY","NY","CA","CA","CA"),
"Species" = c("Clownfish","Clownfish","Regal Tang",
"Regal Tang", "Regal Tang"),
"Year" = c("2012","2014","2001","2014","2000"),
"AnnualCt" = c("500","200","400","680","700"))
pets["AnnualCt"] <- NA
for (row in (1:nrow(pets))){
pets$AnnualCt[row] <- as.character(droplevels(fishes[which(fishes$State == pets[row,]$State &
fishes$Species == pets[row,]$Species &
fishes$Year == 2014),
which(colnames(fishes)=="AnnualCt")]))
}