I am trying to train custom object classifier in Darknet YOLO v2 https://pjreddie.com/darknet/yolo/
I gathered a dataset for images most of them are 6000 x 4000 px and some lower resolutions as well.
Do I need to resize the images before training to be squared ?
I found that the config uses:
[net]
batch=64
subdivisions=8
height=416
width=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
thats why I was wondering how to use it for different sizes of data sets.