10

I have a pandas dataframe which I want to check for substrings of a certain column. At the moment I have 30 lines of code of this kind:

df['NAME'].str.upper().str.contains('LIMITED')) |
(df['NAME'].str.upper().str.contains('INC')) |
(df['NAME'].str.upper().str.contains('CORP')) 

They are all linked with an or condition and if any of them is true, the name is the name of a company rather than a person.

But to me this doesn't seem very elegant. Is there a way to check a pandas string column for "does the string in this column contain any of the substrings in the following list" ['LIMITED', 'INC', 'CORP'].

I found the pandas.DataFrame.isin function, but this is only working for entire strings, not for my substrings.

jpp
  • 159,742
  • 34
  • 281
  • 339
aldorado
  • 4,394
  • 10
  • 35
  • 46
  • *Note*: There is a solution [described by @unutbu](https://stackoverflow.com/a/48600345/9209546) which is more efficient than using `pd.Series.str.contains`. If performance is an issue, then this may be worth investigating. – jpp May 06 '18 at 22:12

1 Answers1

12

You can use regex, where '|' is an "or" in regular expressions:

l = ['LIMITED','INC','CORP']  
regstr = '|'.join(l)
df['NAME'].str.upper().str.contains(regstr)

MVCE:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'NAME':['Baby CORP.','Baby','Baby INC.','Baby LIMITED
   ...: ']})

In [3]: df
Out[3]: 
           NAME
0    Baby CORP.
1          Baby
2     Baby INC.
3  Baby LIMITED

In [4]: l = ['LIMITED','INC','CORP']  
   ...: regstr = '|'.join(l)
   ...: df['NAME'].str.upper().str.contains(regstr)
   ...: 
Out[4]: 
0     True
1    False
2     True
3     True
Name: NAME, dtype: bool

In [5]: regstr
Out[5]: 'LIMITED|INC|CORP'
Scott Boston
  • 147,308
  • 15
  • 139
  • 187