I understand a Barrier can be used to have several tasks synchronise their completion before a second phase runs.
I would like to have several tasks synchronise multiple steps like so:
state is 1;
Task1 runs and pauses waiting for state to become 2;
Task2 runs and pauses waiting for state to become 2;
Task2 is final Task and causes the state to progress to state 2;
Task1 runs and pauses waiting for state to become 3;
Task2 runs and pauses waiting for state to become 3;
Task2 is final Task and causes the state to progress to state 3;
state 3 is final state and so all tasks exit.
I know I can spin up new tasks at the end of each state, but since each task does not take too long, I want to avoid creating new tasks for each step.
I can run the above synchronously using for loops, but final state can be 100,000, and so I would like to make use of more than one thread to run the process faster as the process is CPU bound.
I have tried using a counter to keep track of the number of completed Tasks that is incremented by each Task on completion. If the Task is the final Task to complete then it will change the state to the next state. All completed Tasks then wait using while (iterationState == state) await Task.Yield
but the performance is terrible and it seems to me a very crude way of doing it.
What is the most efficient way to get the above done? There must be an optimised tool to get this done?
I'm using Parallel.For
, creating 300 tasks, and each task needs to run through up to 100,000 states. Each task running through one state completes in less than a second, and creating 300 * 100,000 tasks is a huge overhead that makes running the whole thing synchronously much faster, even if using a single thread.
So I'd like to create 300 Tasks and have these Tasks synchronise moving through the 100,000 states. Hopefully the overhead of creating only 300 tasks instead of 300 * 100,000 tasks, with the overhead of optimised synchronisation between the tasks, will run faster than when doing it synchronously on a single thread.
Each state must complete fully before the next state can be run.
So - what's the optimal synchronisation technique for this scenario? Thanks!