The weights retrieved from restored model doesn't change and the input is also constant But the output of 'Relu:0' operation is giving different results each time.
Below is my code:
sess=tf.Session()
saver = tf.train.import_meta_graph('checkpoints/checkpoints_otherapproach_1/cameranetwork_RAID_CNN-3100.meta')
saver.restore(sess,tf.train.latest_checkpoint(checkpoint_dir='checkpoints/checkpoints_otherapproach_1/'))
images = tf.get_default_graph().get_tensor_by_name('images:0')
phase = tf.get_default_graph().get_tensor_by_name('phase:0')
Activ = tf.get_default_graph().get_tensor_by_name('network/siamese_model/convolution_1/conv_1/Relu:0')
image_array = np.zeros(shape = [1,3,128,64,3]) #*******
imagepath = 'RAiD_Dataset' + '/images_afterremoving_persons_notinallcameras/'+'test'+'/camera_'+str(1)
fullfile_name = imagepath+"/"+ 'camera_1_person_23_index_1.jpg'
image_array[0][0] = cv2.imread(fullfile_name)
image_array[0][1] = image_array[0][0]
image_array[0][2] = image_array[0][0]
image_array = image_array.astype(np.float32)
feed_dict_values ={images: image_array, phase:False}
temp2 = sess.run(Activ, feed_dict =feed_dict_values)
temp1 = sess.run(Activ, feed_dict =feed_dict_values)
print (temp1==temp2).all() #output is false