I am trying to derive a calculated field using the value from columns of previous row which also a calculated field.
Input datafame:
0 1 2 3 4 5
0 94000.0 9.970228 -21.062708 0.0 0.0 0.0
1 0.0 9.970228 -20.748142 0.0 0.0 0.0
Required output:
0 1 2 3 4 5 d
0 94000.0 9.970228 -21.062708 0.0 0.0 0.0 9428.06934
1 0.0 9.970228 -20.748142 0.0 0.0 0.0 9407.00663
Code:
df= pd.DataFrame([(94000, 9.9702279, -21.0627081029071, 0, 0, 0),
(0, 10.1213880586432, -20.7481423282323, 0, 0, 0)])
df['d'] = (df[0]/df[1]).fillna(0) + ((df[0]/df[1]).shift(1) + d[2].shift(1)).fillna(0) +
df[3].shift(1).fillna(0) + df[4].shift(1) + df[5].shift(1)
Output which I am getting:
0 1 2 3 4 5 d
0 94000.0 9.970228 -21.062708 0.0 0.0 0.0 9428.06934
1 0.0 9.970228 -20.748142 0.0 0.0 0.0 -20.748142
EDIT:
I refferd this Example example and now I am getting output as code:
df.loc[0, 'd'] = df.loc[0, 5]
for i in range(1, len(df)):
df.loc[i, 'd'] = (df.loc[i, 0] / df.loc[i, 1]) + (df.loc[i-1, 0] / df.loc[i-1, 1]) + df.loc[i-1, 2]
0 1 2 3 4 5 d
0 94000 9.970228 -21.062708 0 0 0 0.000000
1 0 10.121388 -20.748142 0 0 0 9407.006634