I am doing hyperparameter optimization using Bayesian Optimization in Tensorflow for my Convolutional Neural Network (CNN). And I am getting this error:
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[4136,1,180,432] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
I optimized these hyperparameters:
dim_batch_size = Integer(low=1, high=50, name='batch_size')
dim_kernel_size1 = Integer(low=1, high=75, name='kernel_size1')
dim_kernel_size2 = Integer(low=1, high=50, name='kernel_size2')
dim_depth = Integer(low=1, high=100, name='depth')
dim_num_hidden = Integer(low=5, high=1500, name='num_hidden')
dim_num_dense_layers = Integer(low=1, high=5, name='num_dense_layers')
dim_learning_rate = Real(low=1e-6, high=1e-2, prior='log-uniform',
name='learning_rate')
dim_activation = Categorical(categories=['relu', 'sigmoid'],
name='activation')
dim_max_pool = Integer(low=1, high=100, name='max_pool')
dimensions = [dim_batch_size,
dim_kernel_size1,
dim_kernel_size2,
dim_depth,
dim_num_hidden,
dim_num_dense_layers,
dim_learning_rate,
dim_activation,
dim_max_pool]
It says resource is exhausted. Why is this?
Is it because I optimized too many hyperparameters? Or there is some dimension mismatch? Or did I assign a hyperparameter range that is beyond the allowed range for correct operation?