There are 2 possible ways - check numeric values saved as strings or not.
Check difference:
df = pd.DataFrame({'x1':[1,'2.78','3','+'],'x2':[2.8,'a','c','this is'], 'x3':[1,4,5,4]})
print (df)
x1 x2 x3
0 1 2.8 1
1 2.78 a 4 <-2.78 is float saved as string
2 3 c 5 <-3 is int saved as string
3 + this is 4
#flatten all values
ar = df.values.ravel()
#errors='coerce' parameter in pd.to_numeric return NaNs for non numeric
L = np.unique(ar[np.isnan(pd.to_numeric(ar, errors='coerce'))]).tolist()
print (L)
['+', 'a', 'c', 'this is']
Another solution is use custom function for check if possible convert to float
s:
def is_not_float_try(str):
try:
float(str)
return False
except ValueError:
return True
s = df.stack()
L = s[s.apply(is_not_float_try)].unique().tolist()
print (L)
['a', 'c', '+', 'this is']
If need all values saved as strings use isinstance
:
s = df.stack()
L = s[s.apply(lambda x: isinstance(x, str))].unique().tolist()
print (L)
['2.78', 'a', '3', 'c', '+', 'this is']