Caveats
Checking if a pointer to a function is initialized with an valid function is not an easily solvable problem. Any solution, will not be portable across platforms, and is also dependent on the binary format (statically or dynamically linkable formats) that you end up with. There are ways to do this, with varying success, on different binary formats, however I am not going to go over every permutation. Hopefully this will get you going down that rabbit hole :-) and you can figure out the particular solution that works for you in your circumstances.
In order for some of the solutions to work you have to ensure that the linked binaries have exported symbols (it's possible to do it without, but it's a lot harder and I don't have the time). So when you're linking your program ensure that you have dynamic symbols enabled.
Having said that, here's an approach you can use on systems using dlfcn functions. (See History below)
More Caveats
As @Deduplicator points out in his comment below, there may be situations where 0xdeadbeef
may arbitrarily happen to point to a valid function, in which case you may end up with a situation where you end up calling the wrong valid function. There are ways to mitigate that situation at either compile-time or runtime but you'll have to build the solution by hand. For example, C++ does it by mangling in namespace into the symbols. You could require that to happen. (I'll think of an interesting way to do this and post it)
Linux / SysV variants (Mac OSX included)
Use dladdr
(SysV) (GNU has a dladdr1 as well) to determine which function does the address you provide fall within:
Example:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dlfcn.h>
int is_valid_function_ptr( void *func) {
Dl_info info;
int rc;
rc = dladdr(func, &info);
if (!rc) {
/* really should do more checking here */
return 0;
}
return 1; /* you can print out function names and stuff here */
}
void print(const char *value) {
fprintf(stdout, "%s", value);
}
void call_the_printer(void (*foo)(), const char *value)
{
if(is_valid_function_ptr(foo)) {
foo(value);
}
else {
fprintf(stderr, "The Beef is Dead!\n");
}
}
int main()
{
void (*funcptr)() = (void (*)()) 0xdeadbeef; /* some dead pointer */
call_the_printer(funcptr, "Hello Dead Beef\n");
funcptr = print; /* actually a function */
call_the_printer(funcptr, "Hello Printer\n");
return 0;
}
NOTE Enable dynamic symbols for this to work
GCC/LLVM etc.
use -rdynamic
or -Wl,--export-dynamic
during the link process, so compile with:
gcc -o ex1 -rdynamic ex1.c
Windows
Windows does its own thing (as always) and I haven't tested any of these, but the basic concept should work:
Use GetModuleHandle
and EnumCurrentProcess
together to get loaded symbol information and run through the pointers in a loop to see they match any of the address therein.
The other way would be to use VirtualQuery
and then cast mbi.AllocationBase
to (HMODULE) and see if you get the path of your own binary back.