New to R so forgive me if terminology is off.
I have a dataframe
date val1 val2 val3 val4
1 2016-01-01 8007.59 128739 1573 0
2 2016-01-02 8526.98 142289 1798 0
3 2016-01-03 7720.77 132418 1433 0
4 2016-01-04 6845.67 123710 1280 0
5 2016-01-05 7176.20 126395 1302 0
6 2016-01-06 6125.98 117223 1148 2
7 2016-01-07 6125.16 109752 1119 30
8 2016-01-08 6869.92 107377 1233 24
9 2016-01-09 7289.16 107644 1326 25
10 2016-01-10 7360.92 124131 1330 21
11 2016-01-11 6697.14 112992 1185 26
12 2016-01-12 6418.59 106102 1116 22
13 2016-01-13 7334.01 118562 1156 21
14 2016-01-14 7845.45 113140 1184 17
15 2016-01-15 7902.26 104892 1207 37
16 2016-01-16 8443.98 114435 1336 37
17 2016-01-17 9010.53 129167 1370 29
18 2016-01-18 9750.08 125191 1467 29
19 2016-01-19 6864.10 101307 1085 11
20 2016-01-20 7519.02 89794 1095 21
21 2016-01-21 8208.62 82585 1039 15
22 2016-01-22 7839.53 78314 1000 26
23 2016-01-23 8104.59 79346 1089 32
24 2016-01-24 9133.29 80510 1135 33
25 2016-01-25 9763.78 103603 1217 21
I would like to sum all the values for each week. The data spans multiple years so to be clear I don't want to aggregate week numbers across years (eg NOT all week1s all week2s ... week52s) but rather just sum each individual week-year.
In python/pandas this would be df.groupby(pd.Grouper(key='date', freq='w')).sum()
thanks!