First of all, I wonder how much effort it would have been for you (one person) to sort out the code to be in this form:
import java.util.List;
import java.util.Map;
interface IModel<T> {}
interface I {}
class A implements I {}
class B implements I {}
class C implements I {}
public class UpperBounds
{
public static void main(String[] args)
{
IModel<Map<A, Map<B, List<C>>>> model = null;
foo(model);
}
static void foo(IModel<Map<? extends I, Map<? extends I, List<? extends I>>>> dataModel)
{
}
}
instead of letting hundreds of people (who want to help you) do this on their own, in order to have something that they can compile and have a look at in their IDE. I mean, it's not that hard.
That being said: Technically, you're missing a few more extends
clauses here. This compiles fine:
import java.util.List;
import java.util.Map;
interface IModel<T> {}
interface I {}
class A implements I {}
class B implements I {}
class C implements I {}
public class UpperBounds
{
public static void main(String[] args)
{
IModel<Map<A, Map<B, List<C>>>> model = null;
foo(model);
}
static void foo(IModel<? extends Map<? extends I, ? extends Map<? extends I, ? extends List<? extends I>>>> dataModel)
{
}
}
But you should
not
implement it like that. That's obscure. Whatever this dataModel
parameter is, you should consider creating a proper data structure for that, instead of passing along such a mess of deeply nested generic maps.
The reason of why the original version did not compile was already mentioned in other answers. And it can be made clearer by showing an example using a much simpler method call. Consider this example:
interface IModel<T> {}
interface I {}
class A implements I {}
class B implements I {}
class C implements I {}
public class UpperBounds
{
public static void main(String[] args)
{
List<List<A>> lists = null;
exampleA(lists); // Error
exampleB(lists); // Works!
}
static void exampleA(List<List<? extends I>> lists)
{
}
static void exampleB(List<? extends List<? extends I>> lists)
{
}
}
The exampleA
method cannot accept the given list, whereas the exampleB
method can accept it.
The details are explained nicely in Which super-subtype relationships exist among instantiations of generic types? of the generics FAQ by Angelika Langer.
Intuitively, the key point is that the type List<A>
is a subtype of List<? extends I>
. But letting the method accept only a List<List<? extends I>>
does not allow you to pass in a list whose elements are subtypes of List<? extends I>
. In order to accept subtypes, you have to use ? extends
.
(This could even be simplified further: When a method accepts a List<Number>
, then you cannot pass in a List<Integer>
. But this would not make the point of List<A>
being a subtype of List<? extends I>
clear here)