As awesome as general code generation is, I’m surprised that nobody mentioned that (if you relax your problem definition just a bit) the C preprocessor is perfectly capable of generating the necessary code, using a technique called X macros. In fact every simple bytecode VM in C that I’ve seen uses this approach.
The technique works as follows. First, there is a file (call it insns.h
) containing the authoritative list of instructions,
INSN(FOO, 1)
INSN(BAR, 2)
INSN(BAZ, 3)
or alternatively a macro in some other header containing the same,
#define INSNS \
INSN(FOO, 1) \
INSN(BAR, 2) \
INSN(BAZ, 3)
whichever is more conveinent for you. (I’ll use the first option in the following.) Note that INSN
is not defined anywhere. (Traditionally it would be called X
, thus the name of the technique.) Wherever you want to loop over your instructions, define INSN
to generate the code you want, include insns.h
, then undefine INSN
again.
In your disassembler, write
const char *instruction_by_id(int id) {
switch (id) {
#define INSN(NAME, VALUE) \
case NAME: return #NAME;
#include "insns.h" /* or just INSNS if you use a macro */
#undef INSN
default: return "???";
}
}
using the prefix stringification operator #
to turn names-as-identifiers into names-as-string-literals.
You obviously can’t define the constants this way, because macros cannot define other macros in the C preprocessor. However, if you don’t insist that the instruction constants be preprocessor constants, there’s a different perfectly serviceable constant facility in the C language: enumerations. Whether or not you use an enumerated type, the enumerators defined inside it are regular integer constants from the point of view of the compiler (though not the preprocessor—you cannot use #ifdef
with them, for example). So, using an anonymous enumeration type, define your constants like this:
enum {
#define INSN(NAME, VALUE) \
NAME = VALUE,
#include "insns.h" /* or just INSNS if you use a macro */
#undef INSN
NINSNS /* C89 doesn’t allow trailing commas in enumerations (but C99+ does), and you may find this constant useful in any case */
};
If you want to statically initialize an array indexed by your bytecodes, you’ll have to use C99 designated initializers {[FOO] = foovalue, [BAR] = barvalue, /* ... */}
whether or not you use X macros. However, if you don’t insist on assigning custom codes to your instructions, you can eliminate VALUE
from the above and have the enumeration assign consecutive codes automatically, and then the array can be simply initialized in order, {foovalue, barvalue, /* ... */}
. As a bonus, NINSNS
above then becomes equal to the number of the instructions and the size of any such array, which is why I called it that.
There are more tricks you can use here. For example, if some instructions have variants for several data types, the instruction list X macro can call the type list X macro to generate the variants automatically. (The somewhat ugly second option of storing the X macro list in a large macro and not an include file may be more handy here.) The INSN
macro may take additional arguments such as the mode name, which would ignored in the code list but used to call the appropriate decoding routine in the disassembler. You can use token pasting operator ##
to add prefixes to the names of the constants, as in INSN_ ## NAME
to generate INSN_FOO
, INSN_BAR
, etc. And so on.