I am very new to this with limited statistical experience, so please bear with me. I am trying to run model average on my data using glmer
.
My data has 3 explanatory categorical variables and have successfully run dredge()
on them and their interactions to get AICc values. However, when I run model.avg()
I get output for some of the models, but no output with others. This is what I have input.
ae <- read.csv(file=file.choose())
options(na.action="na.fail")
global.model<-glmer(
cbind(numerator,total-numerator)~d+s+t+d:s:t+d:s+d:t+s:t+(1|random),
data=ae, family=binomial)
options(max.print=1000000)
dredge(global.model,beta=c("none"),evaluate=TRUE,rank="AICc")
ae.model <- glmer(
cbind(numerator,total-numerator)~d+s+t+d:s:t+d:s+d:t+s:t+(1|random),
data=ae,family=binomial)
models <- dredge(ae.model)
summary(model.avg(get.models(models,subset=delta<5)))
An error message comes up:
Error in model.avg.default(get.models(models, subset = delta < 5)) : models are not unique. Duplicates: '2 = 3 = 4' and '10 = 11'
I really don't understand where I am going wrong and why I am getting an output for some interactions and not others.
Thanks in advance for any help given.
summary(ae)
p t day hour scan random behaviour
ae:182 blood :42 Min. :1.000 Min. :1.000 Min. : 0 ae_blood_1_1: 7 alert:182
egg :35 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:10 ae_blood_1_2: 7
repellentfree:63 Median :2.000 Median :2.000 Median :30 ae_blood_1_3: 7
wolf :42 Mean :1.654 Mean :1.962 Mean :30 ae_blood_2_1: 7
3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:50 ae_blood_2_2: 7
Max. :3.000 Max. :3.000 Max. :60 ae_blood_2_3: 7
(Other) :140
numerator total proportion percentage d s
Min. : 0.0000 Min. :17 Min. :0.00000 Min. : 0.000 E :14 1 - very light wind:21
1st Qu.: 0.0000 1st Qu.:17 1st Qu.:0.00000 1st Qu.: 0.000 SE:84 2 - light wind :70
Median : 0.0000 Median :17 Median :0.00000 Median : 0.000 SW:35 3 - moderate wind :77
Mean : 0.5824 Mean :17 Mean :0.03426 Mean : 3.426 W :49 4 - heavy wind :14
3rd Qu.: 0.0000 3rd Qu.:17 3rd Qu.:0.00000 3rd Qu.: 0.000
Max. :16.0000 Max. :17 Max. :0.94118 Max. :94.118