First of all: datetime.now()
isn't appropriate to measure performance, it includes the wall-time and you may just pick a bad time (for your computer) when a high-priority process runs or Pythons GC kicks in, ...
There are dedicated timing functions/modules available in Python: the built-in timeit
module or %timeit
in IPython/Jupyter and several other external modules (like perf
, ...)
Let's see what happens if I use these on your data:
import numpy as np
import math
def norm(l):
s = 0
for i in l:
s += i**2
return math.sqrt(s)
r1 = range(10**4)
r2 = range(10**2)
%timeit norm(r1)
3.34 ms ± 150 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit np.linalg.norm(r1)
1.05 ms ± 3.92 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit norm(r2)
30.8 µs ± 1.53 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit np.linalg.norm(r2)
14.2 µs ± 313 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
It isn't slower for short iterables it's still faster. However note that the real advantage from NumPy functions comes if you already have NumPy arrays:
a1 = np.arange(10**4)
a2 = np.arange(10**2)
%timeit np.linalg.norm(a1)
18.7 µs ± 539 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit np.linalg.norm(a2)
4.03 µs ± 157 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Yeah, it's quite a lot faster now. 18.7us vs. 1ms - almost 100 times faster for 10000 elements. That means most of the time of np.linalg.norm
in your examples was spent in converting the range
to a np.array
.