To give you traction on getting an answer you need to focus on an answerable question where you have done battle and show your code
Off top of my head I would walk across the audio to pluck out a bucket of several samples ... then slide your bucket across several samples and perform another bucket pluck operation ... allow each bucket to contain overlap samples also contained in previous bucket as well as next bucket ... less samples quicker computation more samples greater accuracy to an extent YMMV
... feed each bucket into a Fourier Transform to render the time domain input audio into its frequency domain counterpart ... record into a database salient attributes of the FFT of each bucket like what are the X frequencies having most energy (greatest magnitude on your FFT)
... also perhaps store the standard deviation of those top X frequencies with respect to their energy (how disperse are those frequencies) ... define additional such attributes as needed ... for such a frequency domain approach to work you need relatively few samples in each bucket since FFT works on periodic time series data so if you feed it 500 milliseconds of complex audio like speech or music you no longer have periodic audio, instead you have mush
Then once all existing audio has been sent through above processing do same to your live new audio then identify what prior audio contains most similar sequence of buckets matching your current audio input ... use a Bayesian approach so your guesses have probabilistic weights attached which lend themselves to real-time updates
Sounds like a very cool project good luck ... here are some audio fingerprint resources
does audio clip A appear in audio file B
Detecting audio inside audio [Audio Recognition]
Detecting audio inside audio [Audio Recognition]
Detecting a specific pattern from a FFT in Arduino
Detecting a specific pattern from a FFT in Arduino
Audio Fingerprinting using the AudioContext API
https://news.ycombinator.com/item?id=21436414
https://iq.opengenus.org/audio-fingerprinting/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Detecting a specific pattern from a FFT
Detecting a specific pattern from a FFT in Arduino
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint
SO followup
How to compare / match two non-identical sound clips
How to compare / match two non-identical sound clips
Audio fingerprinting and recognition in Python
https://github.com/worldveil/dejavu
Audio Fingerprinting with Python and Numpy
http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/
MusicBrainz: an open music encyclopedia (musicbrainz.org)
https://news.ycombinator.com/item?id=14478515
https://acoustid.org/chromaprint
How does Chromaprint work?
https://oxygene.sk/2011/01/how-does-chromaprint-work/
https://acoustid.org/
MusicBrainz is an open music encyclopedia that collects music metadata and makes it available to the public.
https://musicbrainz.org/
Chromaprint is the core component of the AcoustID project.
It's a client-side library that implements a custom algorithm for extracting fingerprints from any audio source
https://acoustid.org/chromaprint
Audio Matching (Audio Fingerprinting)
Is it possible to compare two similar songs given their wav files?
Is it possible to compare two similar songs given their wav files?
audio hash
https://en.wikipedia.org/wiki/Hash_function#Finding_similar_records
audio fingerprint
https://encrypted.google.com/search?hl=en&pws=0&q=python+audio+fingerprinting
ACRCloud
https://www.acrcloud.com/
How to recognize a music sample using Python and Gracenote?
Audio landmark fingerprinting as a Node Stream module - nodejs converts a PCM audio signal into a series of audio fingerprints.
https://github.com/adblockradio/stream-audio-fingerprint