I've read some questions on stackoverflow about attention-ocr, and most of them are about the implementation detail of a specific step. What I wanted to know is the pipeline for us to fine-tune this model on our own dataset.
As far as I know, the steps should be:
0) Should we first download FSNS dataset?? I tried to bypass this step and try running inference on just one image, but it always give me error:"ImportError: No module named 'fsns". So I wonder if this error will go away once I set my own dataset up.
1) Store our data in the same format as FSNS. (Links on this topic: How to create dataset in the same format as the FSNS dataset?, how to create cutomized dataset for google tensorflow attention ocr? )
2) Download the pre-trained checkpoint(http://download.tensorflow.org/models/attention_ocr_2017_08_09.tar.gz)
3) Somehow modify the 'model.py' to fit your own purpose.
4) Somehow modify the 'train.py' to train your own module using tensorflow serving.
I am still on the early stage (creating own dataset) on this project now, and confused on how to do it and what's the next stage.