Approach #1
Inspired by this solution
to Find the row indexes of several values in a numpy array
, here's a vectorized solution using searchsorted
-
def search2D_indices(X, searched_values, fillval=-1):
dims = np.maximum(X.max(0), searched_values.max(0))+1
X1D = np.ravel_multi_index(X.T,dims)
searched_valuesID = np.ravel_multi_index(searched_values.T,dims)
sidx = X1D.argsort()
idx = np.searchsorted(X1D,searched_valuesID,sorter=sidx)
idx[idx==len(sidx)] = 0
idx_out = sidx[idx]
return np.where(X1D[idx_out] == searched_valuesID, idx_out, fillval)
Sample run -
In [121]: U
Out[121]:
array([[1, 4],
[2, 5],
[3, 6]])
In [122]: X
Out[122]:
array([[1, 4],
[3, 6],
[7, 8],
[1, 4]])
In [123]: search2D_indices(U, X, fillval=-1)
Out[123]: array([ 0, 2, -1, 0])
Approach #2
Extending to cases with negative ints, we need to offset dims
and the conversion to 1D
accordingly, like so -
def search2D_indices_v2(X, searched_values, fillval=-1):
X_lim = X.max()-X.min(0)
searched_values_lim = searched_values.max()-searched_values.min(0)
dims = np.maximum(X_lim, searched_values_lim)+1
s = dims.cumprod()
X1D = X.dot(s)
searched_valuesID = searched_values.dot(s)
sidx = X1D.argsort()
idx = np.searchsorted(X1D,searched_valuesID,sorter=sidx)
idx[idx==len(sidx)] = 0
idx_out = sidx[idx]
return np.where(X1D[idx_out] == searched_valuesID, idx_out, fillval)
Sample run -
In [142]: U
Out[142]:
array([[-1, -4],
[ 2, 5],
[ 3, 6]])
In [143]: X
Out[143]:
array([[-1, -4],
[ 3, 6],
[ 7, 8],
[-1, -4]])
In [144]: search2D_indices_v2(U, X, fillval=-1)
Out[144]: array([ 0, 2, -1, 0])
Approach #3
Another based on views
-
# https://stackoverflow.com/a/45313353/ @Divakar
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
b = np.ascontiguousarray(b)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
def search2D_indices_views(X, searched_values, fillval=-1):
X1D,searched_valuesID = view1D(X, searched_values)
sidx = X1D.argsort()
idx = np.searchsorted(X1D,searched_valuesID,sorter=sidx)
idx[idx==len(sidx)] = 0
idx_out = sidx[idx]
return np.where(X1D[idx_out] == searched_valuesID, idx_out, fillval)