I am more of a novice in R and have been trying to built a formula to price american type options (call or put) using a simple Monte Carlo Simulation (no regressions etc.). While the code works well for European Type Options, it appears to overvalue american type options (in comparision to Binomial-/Trinomial Trees and other pricing models).
I would greatly appreciate your input!
The steps I take are outlined below.
1.) Simulate n stock price paths with m+1 steps (Geometric Brownian Motion):
n = 10000; m = 100; T = 5; S = 100; X = 100; r = 0.1; v = 0.1; d = 0
pat = matrix(NA,n,m+1)
pat[,1] = S
dt = T/m
for(i in 1:n)
{
for (j in seq(2,m+1))
{
pat[i,j] = pat[i,j-1] + pat[i,j-1]*((r-d)* dt + v*sqrt(dt)*rnorm(1))
}
}
2.) I calculate the payoff matrix for call options and put options and discount both via backwards induction:
# Put option
payP = matrix(NA,n,m+1)
payP[,m+1] = pmax(X-pat[,m+1],0)
for (j in seq(m,1)){
payP[,j] = pmax(X-pat[,j],payP[,j+1]*exp(-r*dt))
}
# Call option
payC = matrix(NA,n,m+1)
payC[,m+1] = pmax(pat[,m+1]-X,0)
for (j in seq(m,1)){
payC[,j] = pmax(pat[,j]-X,payC[,j+1]*exp(-r*dt))
}
3.) I calculate the Option Price as the average (mean) payoff at time 0:
mean(payC[,1])
mean(payP[,1])
In the example above, a call price of approximately 44.83 and an approximate put price of 3.49 is found. However, following a trinomial tree approach (n = 250 steps), prices should more 39.42 (call) and 1.75 (put). Black Scholes Call Price (since no dividend yield) is 39.42.
As I said, any input is highly appreciated. Thank you very much in advance!
All the bests!