Floats
Always remember that float numbers have a limited precision. If you think about it, there must be a limit to how exactly you represent a number if you limit storage to 32 or 64 bits (or any other number).
in Python
Python provides just one float type. Float numbers are usually implemented using 64 bits, but yet they might be 64 bit in one Python binary, 32 bit on another, so you can't really rely on that (however, see @Mark Dickinson comment below).
Let's test this. But note that, because Python does not provide float32 and float64 alternatives, we will use a different library, numpy, to provide us with those types and operations:
>>> n = 1.23456789012345678901234567890
>>> n
1.2345678901234567
>>> numpy.float64(n)
1.2345678901234567
>>> numpy.float32(n)
1.2345679
Here we can see that Python, in my computer, handles the variable as a float64. This already truncates the number we introduced (because a float64 can only handle so much precision).
When we use a float32, precision is further reduced and, because of truncation, the closest number we can represent is slightly different.
Conclusion
Float resolution is limited. Furthermore, some operations behave differently across different architectures.
Even if you are using a consistent float size, not all numbers can be represented, and operations will accumulate truncation errors.
Comparing a float to another float shall be done considering a possible error margin. Do not use float_a == float_b
, instead use abs(float_a - float_b) < error_margin
.
Relying on float representations is always a bad idea. Python sometimes uses scientific notation:
>>> a = 0.0000000001
>>> str(a)
'1e-10'
You can get consistent rounding approximation (ie, to use in file names), but remember that storage and representation are different things. This other thread may assist you: Limiting floats to two decimal points
In general, I'd advise against using float numbers in file names or as any other kind of identifier.
Latitude / Longitude
float32 numbers have not enough precision to represent the 5th and 6th decimal numbers in latitude/longitude pairs (depending on whether the integer part has one, two or three digits).
If you want to learn what's really happening, check this page and test some of your numbers: https://www.h-schmidt.net/FloatConverter/IEEE754.html
Representing
Note that Python rounds float values when representing them:
>>> lat = 123.456789
>>> "{0:.6f}".format(lat)
'123.456789'
>>> "{0:.5f}".format(lat)
'123.45679'
And as stated above, latitude/longitude cannot be correctly represented by a float32 down to the 6th decimal, and furthermore, the truncated float values are rounded when presented by Python:
>>> lat = 123.456789
>>> lat
123.456789
>>> "{0:.5f}".format(numpy.float64(lat))
'123.45679'
>>> "{0:.5f}".format(numpy.float32(lat))
'123.45679'
>>> "{0:.6f}".format(numpy.float32(lat))
'123.456787'
As you can see, the rounded version of that float32 number fails to match the original number from the 5th decimal. But also does the rounded version to the 5th decimal of the float64 number.