Here's a way to do it:
import pandas as pd
# Create Example data with types
df = pd.DataFrame({
'words': ['foo', 'bar', 'spam', 'eggs'],
'nums': [1, 2, 3, 4]
}).astype(dtype={
'words': 'object',
'nums': 'int8'
})
def to_csv(df, path):
# Prepend dtypes to the top of df (from https://stackoverflow.com/a/43408736/7607701)
df.loc[-1] = df.dtypes
df.index = df.index + 1
df.sort_index(inplace=True)
# Then save it to a csv
df.to_csv(path, index=False)
def read_csv(path):
# Read types first line of csv
dtypes = pd.read_csv('tmp.csv', nrows=1).iloc[0].to_dict()
# Read the rest of the lines with the types from above
return pd.read_csv('tmp.csv', dtype=dtypes, skiprows=[1])
print('Before: \n{}\n'.format(df.dtypes))
to_csv(df, 'tmp.csv')
df = read_csv('tmp.csv')
print('After: \n{}\n'.format(df.dtypes))
Output:
Before:
nums int8
words object
dtype: object
After:
nums int8 # still int8
words object
dtype: object