I have a the following challenge with SageMaker:
- I've downloaded one of the tutorial notebooks (https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_abalone_age_predictor_using_keras/tensorflow_abalone_age_predictor_using_keras.ipynb)
I ran the training locally (successfully) with the modifying the following line:
abalone_estimator = TensorFlow(entry_point='abalone.py', role=role, training_steps= 100, evaluation_steps= 100, hyperparameters={'learning_rate': 0.001}, train_instance_count=1, **train_instance_type='local'**) abalone_estimator.fit(inputs)
I then wanted to deploy my model to AWS with the following line but it seems the SDK deploys it locally (it doesn't fail, I just see it running on my machine)
abalone_predictor = abalone_estimator.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge')
Any tips on how to either fix it so it gets deployed to AWS or alternatively re-load my training model and deploy it to AWS from scratch?
Many thanks, Stefan