I have the following indices as you would get them from np.where(...)
:
coords = (
np.asarray([0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 5 6 6 6]),
np.asarray([2 2 8 2 2 4 4 6 2 2 6 2 2 4 6 2 2 6 2 2 4 4 6 2 2 6]),
np.asarray([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]),
np.asarray([0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1])
)
Another tuple with indices is meant to select those that are in coords
:
index = tuple(
np.asarray([0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 5 6 6 6]),
np.asarray([2 8 2 4 4 6 2 2 6 2 2 4 6 2 2 6 2 2 4 4 6 2 2 6]),
np.asarray([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]),
np.asarray([0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1])
)
So for instance, coords[0] is selected because it's in index (at position 0), but coords[1]
isn't selected because it's not available in index
.
I can calculate the mask easily with [x in zip(*index) for x in zip(*coords)]
(converted from bool to int for better readability):
[1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
but this wouldn't be very efficient for larger arrays. Is there a more "numpy-based" way that could calculate the mask?