Background
We have a service operation that can receive concurrent asynchronous requests and must process those requests one at a time.
In the following example, the UploadAndImport(...)
method receives concurrent requests on multiple threads, but its calls to the ImportFile(...)
method must happen one at a time.
Layperson Description
Imagine a warehouse with many workers (multiple threads). People (clients) can send the warehouse many packages (requests) at the same time (concurrently). When a package comes in a worker takes responsibility for it from start to finish, and the person who dropped off the package can leave (fire-and-forget). The workers' job is to put each package down a small chute, and only one worker can put a package down a chute at a time, otherwise chaos ensues. If the person who dropped off the package checks in later (polling endpoint), the warehouse should be able to report on whether the package went down the chute or not.
Question
The question then is how to write a service operation that...
- can receive concurrent client requests,
- receives and processes those requests on multiple threads,
- processes requests on the same thread that received the request,
- processes requests one at a time,
- is a one way fire-and-forget operation, and
- has a separate polling endpoint that reports on request completion.
We've tried the following and are wondering two things:
- Are there any race conditions that we have not considered?
- Is there a more canonical way to code this scenario in C#.NET with a service oriented architecture (we happen to be using WCF)?
Example: What We Have Tried?
This is the service code that we have tried. It works though it feels like somewhat of a hack or kludge.
static ImportFileInfo _inProgressRequest = null;
static readonly ConcurrentDictionary<Guid, ImportFileInfo> WaitingRequests =
new ConcurrentDictionary<Guid, ImportFileInfo>();
public void UploadAndImport(ImportFileInfo request)
{
// Receive the incoming request
WaitingRequests.TryAdd(request.OperationId, request);
while (null != Interlocked.CompareExchange(ref _inProgressRequest, request, null))
{
// Wait for any previous processing to complete
Thread.Sleep(500);
}
// Process the incoming request
ImportFile(request);
Interlocked.Exchange(ref _inProgressRequest, null);
WaitingRequests.TryRemove(request.OperationId, out _);
}
public bool UploadAndImportIsComplete(Guid operationId) =>
!WaitingRequests.ContainsKey(operationId);
This is example client code.
private static async Task UploadFile(FileInfo fileInfo, ImportFileInfo importFileInfo)
{
using (var proxy = new Proxy())
using (var stream = new FileStream(fileInfo.FullName, FileMode.Open, FileAccess.Read))
{
importFileInfo.FileByteStream = stream;
proxy.UploadAndImport(importFileInfo);
}
await Task.Run(() => Poller.Poll(timeoutSeconds: 90, intervalSeconds: 1, func: () =>
{
using (var proxy = new Proxy())
{
return proxy.UploadAndImportIsComplete(importFileInfo.OperationId);
}
}));
}
It's hard to write a minimum viable example of this in a Fiddle, but here is a start that give a sense and that compiles.
As before, the above seems like a hack/kludge, and we are asking both about potential pitfalls in its approach and for alternative patterns that are more appropriate/canonical.